Home Light Version
Normal Version
Search | BBS | Guest Book | Site Map | Help | Contact us | About us
IE version

[Index]

Introduction
Essence
Memorizing
How to memorize
Basic Formulas
Sum and Difference Formulas
Double & Triple Angle Formulas
Half Angle Formulas
Product to Sum Formulas
Sum to Product Formulas
All Formulas
Understanding
Page 1
Page 2
Page 3
Page 4
Page 5
Summarizing
Page 1
Page 2
Examples
Examples
Example 1
Example 2
Example 3
Example 4
Example 5
Example 6
Example 7
Example 8
General ideas
Exercises
Final thoughts
     
condition
Page 1 | Page 2 | Proof(s)

Example 6--Page 2

We want 6_6201.gif (2574 bytes)6_6202.gif (1581 bytes). Looking at the right side we want to get 6_6203.gif (1239 bytes) from the left side. We know by the Product to Sum formulas, sine multiplied by cosine will become sine plus sine, and 2pi_o_7.gif (1024 bytes), 3pi_o_7.gif (1014 bytes)r_arrow.gif (902 bytes)5pi_o_7.gif (998 bytes), pi_o_7.gif (938 bytes); 3pi_o_7.gif (1014 bytes), pi_o_7.gif (938 bytes)r_arrow.gif (902 bytes)2pi_o_7.gif (1024 bytes), 4pi_o_7.gif (1016 bytes). So we will get 6_6203.gif (1239 bytes) and 6_6204.gif (1224 bytes), but by using the Derived formula, 6_6205.gif (1293 bytes)6_6206.gif (1570 bytes)6_6203.gif (1239 bytes). We reach our goal.

6_6207.gif (11101 bytes)

Since 6_6208.gif (3009 bytes).

6_6209.gif (4404 bytes)

Now for the second factor, we still didn't reach the goal 6_6210.gif (1167 bytes), and cancel 6_6211.gif (1338 bytes). But we see it is simpler than the last step. Same idea, we want 6_6212.gif (1842 bytes)6_6213.gif (1704 bytes). It looks like the Sum to Product formulas. If we use the Sum to Product formula of sines immediately, we have 6_6212.gif (1842 bytes)6_6214.gif (1825 bytes). The right side of it is not 6_6215.gif (1666 bytes). We need pi_o_7.gif (938 bytes), not 3pi_o_14.gif (1046 bytes)! How can we get pi_o_7.gif (938 bytes)? If we use the Derived formulas we have 6_6212.gif (1842 bytes)6_6216.gif (1832 bytes)6_6217.gif (1781 bytes)6_6218.gif (1710 bytes), which is what we want.

6_6219.gif (9104 bytes)

The identity has been proven.

This problem is a little bit more difficult than the previous ones. You can see that Derived formulas are very useful for actual angle identities.

     
  

Previous (878 bytes)Go up (430 bytes)Next (714 bytes)

  

LWR
Questions? Comments? Contact us.
© Copyright 1998 LWR, ThinkQuest team 17119. All rights reserved.